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Abstract
We propose and solve a simple model describing secondary structure formation
in random hetero-polymers. It describes monomers with a combination of one-
dimensional short-range interactions (representing steric forces and hydrogen
bonds) and infinite-range interactions (representing polarity forces). We solve
our model using a combination of mean-field and random-field techniques,
leading to phase diagrams exhibiting second-order transitions between folded,
partially folded and unfolded states, including regions where folding depends
on initial conditions. Our theoretical results, which are in excellent agreement
with numerical simulations, lead to an appealing physical picture of the folding
process: the polarity forces drive the transition to a collapsed state, the steric
forces introduce monomer specificity and the hydrogen bonds stabilize the
conformation by damping the frustration-induced multiplicity of states.

PACS numbers: 6141, 7510N

1. Introduction

Proteins are polymeric chains of amino-acids. The successful functioning of a protein
in a living organism depends crucially, among other factors, on its ability to fold into a
desired three-dimensional structure (its ‘native state’), and to subsequently attach in a very
specific way to other macro-molecules. From a biological and medical point of view, it
is therefore highly desirable to know which native state corresponds to a given amino-acid
sequence, and (conversely, for therapeutic purposes) to know which amino-acid sequence
would fold into a desired native state; this requires a quantitative understanding of the physical
forces underlying the folding mechanism. A detailed identification of sequence-specific
native states will necessarily involve sophisticated (molecular-dynamics-based) computational
methods. However, due to the large number of degrees of freedom of proteins, the
complicated nature of the various types of electro-chemical interaction and the so-called
‘hard’ geometric chain constraints of a protein, such computer programs are unfortunately
(as yet) extremely slow. Thus, in order to identify the role and degree of importance of the
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various folding parameters, a theoretical (i.e. statistical mechanical) analysis would be very
welcome.

It is generally assumed that the presently observed population of real proteins has
evolved from the larger class of random hetero-polymers, driven by natural selection.
This suggests that the study of random hetero-polymers is a natural first step en route
to the statistical mechanical study of proteins. Furthermore, already at an early stage
it was recognized [1], via a theoretical study based on the random energy scheme [2],
that many aspects of protein folding (such as the appearance of ‘mis-folded’ phases, and
transitions between folded and unfolded states) can be understood on the basis of equilibrium
statistical mechanical calculations for random hetero-polymers. Even simple models with
only two types of amino-acid interacting with the water solvent, namely hydrophobic
amino-acids versus polar ones, can successfully describe the basics of protein folding
(see e.g. the so-called HP model [3]). Further statistical mechanical approaches include
replica calculations on polymer chains with Gaussian pair interactions [4, 5], variational
analyses in replica spaces [6, 7], lattice models [8, 9] and lattice gas models [10], to
mention but a few. In most of these examples, analytical solvability relies on the absence
of spatial structure, which allows for more or less conventional mean-field statistical
mechanics.

In this paper we extend the class of analytically solvable models in this field. We present a
model for secondary structure formation in random hetero-polymers consisting of amino-acid
monomers which are allowed to interact in three qualitatively different ways: (i) via so-
called steric interactions, which reflect monomer-specific geometric constraints and electrical
forces determining the local energy landscape for the orientation of monomer-connecting
links, (ii) via hydrogen bonding, which acts over larger distances along the chain, and is
believed to play a role in the stabilization of helix-type structures, and (iii) via polarity-
induced energy gradients, which tend to promote states in which the hydrophobic amino-acids
are more or less turned towards the same side of the polymeric chain, in order to enable
effective shielding from water molecules via folding of the polymer as a whole. Interactions
(i) and (ii) are of a short-range nature, whereas (iii) is long range. We note that secondary
structure formation has also been studied within a mean-field approach in [11], and that a
combination of different types of monomer interaction has been proposed previously in [1]. In
the latter study, assuming statistical independence of energy levels, the random energy scheme
could provide qualitative results; however, the validity of this approach has since then been
questioned [12]. In contrast, our solution does not employ random energy considerations.
It is based on a combination of mean-field and random transfer-matrix techniques, which
in one-dimensional models are known to reduce the evaluation of the partition function
to a relatively simple numerical problem. Due to the presence of additional long-range
interactions (via polarity-induced forces) our model no longer lies in the universality class
of one-dimensional systems, and phase transitions are therefore possible (and will indeed
occur) at finite temperatures.

Our paper is organized as follows. We first define our model and the relevant macroscopic
observables. Since the disordered infinite-range (polarity-induced) part of our Hamiltonian,
which drives the collapse to a folded state, is different in structure from the more familiar
Mattis-like terms in mean-field spin systems, we first solve our model for the case where
only polarity energies are present. We then proceed to the solution of the full model, with
all three interaction terms present, but now limiting ourselves (for simplicity) to the simplest
choice of angular variables. Our phase diagrams exhibit second-order transitions between
folded and unfolded states, whereas close to zero temperature a hierarchy of ‘mixed’ phases
appears, where new ergodic components are created and where folding depends on initial
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Figure 1. Illustration of the physical meaning of our clock-state
spin variables φi . A spin state φ represents the physical location
of an individual monomer, relative to the one-dimensional polymer
chain axis (the ‘backbone’, drawn as a dashed line). In this graph
the number of possible locations for any given monomer is q = 3.
The black blobs represent locations occupied by a monomer.
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Figure 2. Illustration of polarity interactions. Every pair (i, j) of monomers for which both
ξi = ξj (the two are of the same polarity, denoted in the graph by ‘+’ or ‘−’) and φi = φj (the two
are oriented towards the same side of the backbone) will give a reduction of the total energy. The
rationale is that such an arrangement will make it easier for the polymer to fold into an energetically
favourable conformation where hydrophobic monomers form the inner residues (i.e. are shielded
from the solvent) and hydrophilic monomers form the surface esidues (i.e. are exposed to the
solvent).

conditions. The latter phases are found to be related to entropic discontinuities. Finally,
we present results from simulation experiments, which show excellent agreement with the
theory.

2. Model definitions

We consider one-dimensional models of random hetero-polymers, where N clock-state spin

variables φi ∈
{

(2k+1)π
q

; k = 0, . . . , q − 1
}

describe the spatial orientations of successive

monomer residues in planes vertical to the polymer’s chain axis, see figure 1. The
configurational state of the system as a whole is written as φ = (φ1, . . . , φN). We
define the Hamiltionian of the system to be the sum of three qualitatively different terms,
H(φ) = Hs(φ) + Hp(φ) + HHb(φ), which are defined and interpreted as follows:



4440 N S Skantzos et al

(i) Polarity-induced energy (see figure 2):

Hp(φ) = −Jp

N

∑
ij

ξiξj δφi ,φj
. (1)

This describes exchange energies of monomer pairs generated by their polarity type,
believed to be the main driving forces for compactification. Proteins live in an aqueous
environment, and amino-acids of the same polarity prefer to co-align, so that folding
allows the chain to arrange for hydrophobic and hydrophilic monomers to form the inner
and surface residues of the molecule, respectively. Equation (1) describes this effect
phenomenologically: ξi indicates whether the monomer at site i is hydrophobic (ξi = 1)
or hydrophilic (ξi = −1), and we reduce the configuration energy for every pair (i, j) of
monomer residues which are both of the same type and which are also found in identical
orientations relative to the backbone.

(ii) Hydrogen-bond energy (see figure 3):

HHb(φ) = −
∑
i

{
JL

Hb

q−1∏
k=0

δφi+k+1−φi+k ,
2π
q

+ JR
Hb

q−1∏
k=0

δφi+k+1−φi+k ,
−2π
q

}
. (2)

The second contribution to the energy describes the effect of hydrogen bonding: a
monomer pair (i, j) is coupled by a hydrogen bond of strength JL

Hb or JR
Hb if and only

if they are spatially separated by exactly q lattice sites and if the relative angles φk+1–φk

of all monomers k = i, . . . , i + q − 1 form a local helical twist of ± 2π
q

(and therefore
monomer i and monomer i + q have the same orientation relative to the backbone), such
that intermediate monomers do not block the formation of the hydrogen bond.

(iii) Steric energy (see figure 3):

Hs(φ) = −Js
∑
i

cos[(φi+1 − φi) − (φi − φi−1) − ai]. (3)

This describes local short-range steric monomer–monomer interactions, favouring
alignment of the relative angles (φi+1 − φi) and (φi − φi−1) towards a specific preferred
direction ai which depends on the type of monomer present at site i.

The various energy scales in the problem, and thus the relative importance of the three types
of force, are controlled by the non-negative coupling constants {Jp, JL,R

Hb , Js}. A preference
for left- or right-handed helices can be built in by modifying the balance between JL

Hb and JR
Hb.

The quenched disorder in the problem is given by the realization of the (randomly drawn, but
fixed) amino-acid sequence, i.e. the variables {ξi, ai}. We denote the monomer type found at
location i in the chain by λi , so that ξi = ξ(λi) and ai = a(λi). The disorder is characterized
by the distributions

w[a, ξ ] = lim
N→∞

1

N

∑
i

δξ,ξi δ[a − ai] =
∑
λ

W(λ) δξ,ξ(λ)δ[a − a(λ)] (4)

W(λ) = lim
N→∞

1

N

∑
i

δλ,λi
. (5)

Note that for random hetero-polymers the distribution W(λ) is simply the a priori distribution
according to which the monomers were selected. The marginal distribution specifying polarity
statistics is written as

w[ξ ] =
∫

da w[a, ξ ] = 1
2 (1 + p)δξ,1 + 1

2 (1 − p)δξ,−1 (6)

with p ∈ [−1, 1].
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Figure 3. Illustration of the hydrogen-bonding and steric energies. Left: hydrogen bonds of
strength JR

Hb are formed between monomers i and j whenever |j − i| = q, where q represents the

number of available orientations (q = 3 in this graph), and at the same time
∏j−1

k=i δφk+1−φk,
2π
q

= 1

(similarly for JL
Hb). The thick dashed line in the left-hand diagram is a guide to the eye, indicating

the helical structure of the backbone induced by the hydrogen bonds. Right: steric interactions
impose a specific preferred relative angle ai = (φi+1 −φi)− (φi −φi−1), dependent on the (largely
geometrical) properties of the monomer type λi present at site i.

We will solve our model in thermal equilibrium via a suitable combination of mean- and
random-field techniques [13], which will allow us to evaluate the free energy per monomer f
in the thermodynamic limit:

f = − lim
N→∞

1

βN
log

∑
φ

e−βH(φ) (7)

where H(φ) = Hp(φ)+HHb(φ)+Hs(φ). The parameter β is an effective inverse temperature,
which controls the amount of stochasticity in the underlying dynamics (with β = 0 and
∞ corresponding to purely random and purely deterministic dynamics, respectively). The
effective temperature will generally depend on various environmental factors, such as solvent
conditions. We wish to emphasize that our present model takes into account the folding of
the hetero-polymer only as a general mechanism with which to realize the potential for energy
gain via polarity-induced forces, without specifying the detailed three-dimensional structure
this reduction would give rise to. It can consequently describe only the formation of secondary
structure as the result of folding, not the emerging tertiary structure; this is the price to be paid
for exact analytical solvability.

Given the above definitions, it is natural to divide the monomers into two groups
according to their polarity, {1, . . . , N} = I+

⋃
I− with I± = {i| ξi = ±1}. We note that

limN→∞ |I±|/N = 1
2 (1 ± p). Within each group one can define as natural observables to

measure the degree of polymer compactification (i.e. the impact of the polarity-induced forces)
the distribution of monomer residue orientations, P+(φ; φ) and P−(φ; φ):

P±(φ) = lim
N→∞

〈P±(φ; φ)〉 P±(φ; φ) = 1

|I±|
∑
i∈I±

δφ,φi
(8)

where 〈· · ·〉 denotes an average over the Boltzmann distribution p∞(φ) ∼ exp[−βH(φ)].
Note that, by definition, P±(φ) ∈ [0, 1] and

∑
φ P±(φ) = 1. Note also that, due to the

equivalence of all absolute orientations, spontaneous symmetry breaking can occur. In order
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to measure the degree of L(eft) or R(ight) chirality of the folded state, as induced by the steric
interactions and hydrogen bonds, we introduce the two order parameters

χ± = lim
N→∞

〈χ±(φ)〉 χ±(φ) = 1

N

∑
i

q−1∏
k=0

δφi+k+1−φi+k ,± 2π
q
. (9)

Thus χ+ = −∂f/∂JL
Hb and χ− = −∂f/∂JR

Hb.
Before solving the full model it is instructive to consider the various limiting cases one

obtains by setting specific combinations of the characteristic energies {Js, Jp, JHb} in (1)–(3)
to zero. First, in the absence of polarity interactions the model reduces to a one-dimensional
random-field Potts model with site disorder, for which the free energy is known to be analytic
for finite temperatures, and there can be no phase transition. On the other hand, in the absence
of steric and hydrogen-bond interactions the model reduces to a mean-field model with site
disorder. The most interesting scenario, from a physical and a technical point of view, is
the one where all three forces are included. Due to the long-range interactions our model
is expected to show a phase transition, whereas the short-range interactions are expected
to generate frustration phenomena such as hierarchies of discontinuous transitions [14] and
non-analytic distribution functions for local observables such as devil’s staircases [13]. An
appealing feature of the model is that, apart from the mean-field forces, it is essentially one
dimensional and thus allows for an exact solution based on random-field techniques such as
in [13, 15–17].

3. Solution of the polarity model

In order to identify and interpret the properties of the full model, to be analysed in a subsequent
section, we will now first solve our model in the absence of short-range interactions, i.e. for
Js = J

L,R
Hb = 0, so that H(φ) = Hp(φ).

3.1. Calculation of the free energy

Upon using the simple identity
∑

ij δφi ,φj
= ∑

φ

∑
ij δφi ,φδφj ,φ we can express the polarity

Hamiltonian (1) in terms of the order parameters (8)

Hp(φ) = −JpN
∑
φ

{ |I+|
N

P+(φ; φ) − |I−|
N

P−(φ; φ)

}2

. (10)

Upon introducing delta functions to enforce the definitions (8), in integral representation, we
obtain the following expression for the free energy per site (7):

f = − lim
N→∞

1

βN
log

∫ ∏
φ

[
dP±(φ) dP̂±(φ)

]
e−NG[{P±,P̂±}] (11)

where

G
[{P±, P̂±}] = − 1

4βJp
∑
φ

{(1 + p)P+(φ) − (1 − p)P−(φ)}2

−i
∑
φ

{
P̂+(φ)P+(φ) + P̂−(φ)P−(φ)

}
− 1

2 (1 + p) log
∑
φ

e−2iP̂+(φ)/(1+p) − 1
2 (1 − p) log

∑
φ

e−2iP̂−(φ)/(1−p).

In the thermodynamic limit N → ∞, the integral in (11) can be evaluated via steepest
descent. Derivation of G[· · ·] with respect to P±(φ) gives the equation iP̂±(φ) =
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∓ 1
2 (1±p)βJp

[
(1 + p)P+(φ) − (1 − p)P−(φ)

]
, with which we eliminate the conjugate order

parameters. This results in f = extr{L}f [{L}]
f [{L}] = Jp

4

∑
φ

L2(φ) − 1+p

2β
log

∑
φ

eβJpL(φ) − 1−p

2β
log

∑
φ

e−βJpL(φ) (12)

where L(φ) = (1 + p)P+(φ) − (1 − p)P−(φ). Extremization with respect to the L(φ) leads
to a set of q coupled saddle-point equations from which to solve {L(φ)}, in terms of which we
can then also express our original observables P±(φ):

L(φ) = (1+p)
eβJpL(φ)∑
φ′ eβJpL(φ′) − (1−p)

e−βJpL(φ)∑
φ′ e−βJpL(φ′) (13)

P±(φ) = e±βJpL(φ)∑
φ′ e±βJpL(φ′) . (14)

Note that (13) is invariant under the transformation {p,L(φ)} → {−p,−L(φ)} ∀φ, and that∑
φ L(φ) = 2p.

The uniform high-temperature solution, where L(φ) = L = 2p/q for all φ and therefore
P±(φ) = 1

q
for allφ, always satisfies (13). Expansion of the free energy (12) around the uniform

solution {L∗} allows us to determine the critical temperature Tc = 1/βc where it becomes
locally unstable. For perturbations {δL} orthogonal to {L∗}, i.e. for which

∑
φ δL(φ) = 0, we

find

f [{L + δL}] = f [{L }] +
J 2
p

2q

(
q

2Jp
−β

)∑
φ

δ2L(φ) + O(δ3L). (15)

Hence a second-order phase transition to an ordered state takes place at

Tc = β−1
c = 2Jp

q
(16)

(or at a higher temperature, as a first-order transition). This value is independent of the variable
p = limN→∞ 1

N

∑
i ξi , which measures the balance between hydrophobic and hydrophilic

monomers.
Similarly we can find the system’s ground state, for any non-trivial value of q. Let us

define Lg(φ) = limT→0 L(φ), L+ = maxφ Lg(φ) and L− = minφ Lg(φ), and let us denote
the number of φ for which Lg(φ) = L+ as q+ � 1 and the number for which Lg(φ) = L−
as q− � 1 (with q+ + q− � q). We assume L− < L+; one can easily convince oneself that
the alternative L− = L+, i.e. the high-temperature solution, will not give the ground state.
Taking the T → 0 limit in the saddle-point equations (13) then shows that L± = p±1

q±
, and

that Lg(φ) = 0 for all φ such that L− < Lg(φ) < L+. Thus Lg(φ) can take only one of three
different values. The ground-state energy per monomer, u = limT→0 f , can subsequently be
obtained as the T → 0 limit of (12):

u = 1
2Jp min

q+,q−

{
1
2

∑
φ

L2
g(φ) − (1+p)max

φ
Lg(φ) + (1−p)min

φ
Lg(φ)

}

= − 1

4
Jp max

q+,q−

{
(1 + p)2

q+
+
(1 − p)2

q−

}
= −1

2
Jp(1 + p2). (17)

The minimum is obtained for q+ = q− = 1: there is one angle φ+ with Lg(φ+) = p + 1, there
is one angle φ− with Lg(φ−) = p − 1 and the remaining q − 2 orientations have Lg(φ) = 0.
The ground state, written in terms of the monomer densities P±(φ), is

P+(φ+) = 1 P+(φ) = 0 for all φ �= φ+ (18)

P−(φ−) = 1 P−(φ) = 0 for all φ �= φ−. (19)
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All hydrophobic monomers cluster at some orientation φ+, and all hydrophilic monomers
cluster at a different orientation φ−, which is indeed the energetically most favourable
configuration for any value of q. For q > 2 this introduces a trivial degeneracy of the ground
state, since the choice made for φ± is constrained only by φ+ �= φ−.

In general, non-trivial solutions of the nonlinear fixed-point equations (13) can only
be determined numerically, due to the presence of two terms

∑
φ e±βJpL(φ), which act as

normalization constants for P±(φ) and couple the q equations in a transcendental manner.
However, for the two simplest scenarios q = 2 (i.e. φ ∈ {−π

2 ,
π
2 }) and q = 3 (i.e.

φ ∈ {− 2π
3 , 0, 2π

3 }) it turns out that these terms can be transformed away, and that an analytical
solution is available. We note that, due to the specific properties of the high-temperature state
(where all L(φ) are identical) and of the ground state (where the L(φ) can take only one of
three possible values), the q > 3 phase diagrams can at most differ quantitatively from that of
the q = 3 model (provided q remains finite). We now solve our saddle-point equations (13)
for q ∈ {2, 3}.

3.2. Phase diagram for q = 2

In the case where q = 2 (two available orientations per monomer) we have φ ∈ {−π
2 ,

π
2 }, and

we define Z = 1
2βJp[L( 1

2π) − L(− 1
2π)]. Since the two order parameters L(φ) also obey

1
2 [L( 1

2π) + L(− 1
2π)] = p, one simply has

L(± 1
2π) = p ± Z.

Insertion into (13) leads to a single Curie–Weiss equation for Z:

Z = tanh(βJpZ). (20)

This predicts a second-order transition at βJp = 1, in agreement with the critical
temperature (16) for de-stabilization of the high-temperature solution found earlier. The order
parameter Z is recognized to be simply the staggered magnetization N−1∑

i ξiσi we would
have generated if we had studied the q = 2 model upon transforming φi = 1

2πσi , with
σi ∈ {−1, 1} (this would have led to a Mattis-type Hamiltonian). The order parameters P+(φ)

and P−(φ) subsequently follow in terms of the solution Z of equation (20) as

P+

(
1

2
π

)
= P−

(
−1

2
π

)
= 1

1 + e−2βJpZ

P+

(
−1

2
π

)
= P−

(
1

2
π

)
= 1

1 + e2βJpZ
.

For T > Tc = Jp one simply recovers the uniform state P+(φ) = P−(φ) = 1
2 , for all φ, as

one should. Below Tc the system will choose to gradually align hydrophobic and hydrophilic
monomers and fold, with perfect alignment (or separation) of the two polarity types at T = 0.

3.3. Phase diagram for q = 3

In the case where q = 3 (three possible orientations per monomer) we have φ ∈ {− 2
3π, 0, 2

3π}.
The possible solutions of our saddle-point equation (13) can be classified on the basis of the
number of different values taken by the three order parameters {L(− 2

3π), L(0), L(
2
3π)}, as

follows:

(i) All order parameters take the same value, L(− 2
3π) = L(0) = L( 2

3π) = 2
3p. This is the

uniform high-temperature state, which we have already encountered, and which according
to (16) becomes locally unstable at Tc = 2

3Jp.



Structure formation in random hetero-polymers 4445

(ii) Exactly two order parameters take the same value. In view of the invariance of
equation (13) under permutations of the three allowed locations {− 2

3π, 0, 2
3π} we may

without loss of generality put L(± 2
3π) = L1 and L(0) = L2 (with L1 �= L2).

(iii) All three order parameters are different: L(− 2
3π) = L1, L(0) = L2, L( 2

3π) = L3, with
L1 �= L2 �= L3.

We will show that, as the temperature is lowered, first the type (ii) solution bifurcates
continuously from the type (i) solution at T I

c = 2
3Jp, and the type (iii) solution, in turn,

bifurcates continuously from type (ii) at a lower temperature T II
c .

In order to find the type (ii) solutions, and the critical temperature for which these are
created as bifurcations away from the uniform one, we introduce Z = L1 − L2. Thus

L(± 2
3π) = L1 = 1

3 (2p + Z)

L(0) = L2 = 1
3 (2p − 2Z).

Insertion shows that such states indeed solve (13), with Z following from

Z = F(Z;βJp)
F (Z;K) = (1+ p)

1− e−KZ

2 + e−KZ
− (1− p)

1− eKZ

2 + eKZ
.

(21)

The trivial solution Z = 0 of (21) brings us back to the uniform state. Bifurcations occur
when Z = F(Z;βJp) and 1 = ∂ZF (Z;βJp); continuous bifurcations away from Z = 0
occur when 1 = limZ→0 ∂ZF (Z;βJp) = 2

3βJp. This gives a second-order transition from
state (i) to state (ii) at the critical temperature T I

c = 2
3Jp, i.e. precisely at the point (16)

where the uniform state was found to de-stabilize. Since limZ→±∞ F(Z;K) = ± 3
2 − 1

2p and
limZ→0 ∂

2
ZF (Z;K) = − 2

9K
2 � 0 there is no evidence for first-order transitions.

Next, in order to analyse the type (iii) solutions and to build in the normalization∑
φ L(φ) = 2p, we define Z1 = L1 − L2 and Z2 = L1 − L3, such that

L( 2
3π) = L1 = 1

3 (2p + Z1 + Z2)

L(0) = L2 = 1
3 (2p − 2Z1 + Z2)

L(− 2
3π) = L3 = 1

3 (2p + Z1 − 2Z2).

This reduces our saddle-point equations (13) to two coupled equations for {Z1, Z2}, which
take the following form:

Z1 = F(Z1, Z2;βJp) Z2 = F(Z2, Z1;βJp)
F (Z1, Z2;K) = (1+ p)

1− e−KZ1

1 + e−KZ1 + e−KZ2
− (1− p)

1− eKZ1

1 + eKZ1 + eKZ2
.

(22)

For {Z1 = 0, Z2 �= 0} or {Z2 = 0, Z1 �= 0} we return to a state of type (ii), whereas
the trivial solution Z1 = Z2 = 0 brings us back to state (i). Bifurcations occur when
(Z1, Z2) = F (Z1, Z2;βJp) and det[1 − (DF )(Z1, Z2)] = 0, where F : R

2 → R
2 denotes

the nonlinear mapping (Z1, Z2) → (F (Z1, Z2;βJp), F (Z2, Z1;βJp)) and DF its Jacobian
matrix. Thus, when the system is in a type (ii) state, corresponding to e.g. Z1 = Z and Z2 = 0
with Z given as the solution of (21), a continuous bifurcation is signalled by

det

∣∣∣∣ 1 − (∂1F)(Z, 0;βJp) −(∂2F)(Z, 0;βJp)
−(∂2F)(0, Z;βJp) 1 − (∂1F)(0, Z;βJp)

∣∣∣∣ = 0.

Working out the partial derivatives shows that, since one of the off-diagonal terms vanishes,
this is equivalent to requiring either

1

βJp
= 1+ p

2 + e−βJpZ
+

1− p

2 + eβJpZ
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Figure 4. Phase diagram of the polarity model for q = 3, where φ ∈ {− 2
3π, 0, 2

3π}. Its regions
are defined in terms of the number of different values taken by the order parameters {L(φ)}, and
thus by the monomer distributions {P±(φ)}, at the three possible orientations: (i) all three L(φ) are
identical, (ii) only two of the L(φ) are identical, (iii) all three L(φ) are different. Within our model,
these three types of phase, which are separated by second-order transitions (indicated in the figure
by solid lines, with a tri-critical point at (T /Jp, p) = ( 2

3 , 0)), can be interpreted as representing

different degrees of folding. Note that, in contrast to the case q = 2, where φ ∈ {− 1
2π,

1
2π}, here

the transitions do depend on the polarity statistics as characterized by p.

or
1

3βJp
= (1+ p)e−βJpZ

(2 + e−βJpZ)2
+
(1− p)eβJpZ

(2 + eβJpZ)2
.

The second equation signals a possible destabilization within the class of type (ii) solutions
(which can only happen when there are multiple stable type (ii) solutions, for which there
is no evidence); the first equation describes the creation/annihilation of type (iii) solutions
from a type (ii) one. When solved in combination with the saddle-point equation (21), this
latter equation gives the desired (second-order) (ii)→(iii) transition line T II

c . The solution
can be represented conveniently in the form of a parametrization in the (βJp, p) plane, with
x = βJpZ ∈ (−∞,∞):

βJ (x) = 1

2

cosh(x) − 1 + x sinh(x)

cosh(x) − 1
(23)

p(x) = x cosh(x) + 2x − 3 sinh(x)

1 − cosh(x) − x sinh(x)
. (24)

Note that limx→∓∞ p(x) = ±1 and that βJ (x) ∼ 1
2x as x → ∞. Equations (23), (24) for the

(ii)→(iii) transition, together with βJp = 3/2 (16) describing the (i)→(ii) transition, in fact
represent all phase transitions in the q = 3 system with polarity energies only. This conjecture
is based on extensive numerical exploration of the solutions of the fixed-point equations (13).

In figure 4 we show the resultant phase diagram of the polarity model for q = 3, i.e. for
φ ∈ {− 2π

3 , 0, 2π
3

}
, in the (T /Jp, p) plane. It consists of regions characterized by the number

of different values taken by the three order parameters {L(φ)}, and therefore by the monomer
distributions {P±(φ)} at the three possible orientations. All regions are separated by second-
order transition lines, namely (16) and (23), (24). For T/Jp > 3

2 (the high-temperature region)
the only possible solution of (13), for any p, is L(φ) = 2

3p for all φ; here the monomers have
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Figure 5. The values taken by the three order parameters L(φ) for the polarity model with q = 3,
i.e. φ ∈ {− 2

3π, 0, 2
3π}, as a function of βJp (i.e. Jp/T ) and for two different values of p. They

were obtained by numerical solution of the saddle-point equations (13). The graphs shows the two
phase transitions (i)→(ii) and (ii)→(iii) as continuous bifurcations. As predicted, the first transition
occurs at βJp = 3

2 (in both graphs), whereas the location of the second transition depends on p.

no preferred orientation (to be interpreted as resulting in a swollen state). For T/Jp � 2
3 the

equilibrium solution will depend on the value of the polarity statistics parameter p. In region
(ii) the monomers exhibit some degree of orientation preference (to be interpreted as resulting
in a partially folded state), whereas in region (iii) one finds a highly orientation specific solution
(to be interpreted as resulting in a fully folded state). Note that, in view of the fact that also
for q > 3 the system will in equilibrium allow for at most three different values for the order
parameters L(φ), see (18), (19), one must expect the q > 3 phase diagrams to be qualitatively
similar to the q = 3 one, with only q-dependent re-scaling and weak deformations of transition
lines.

In figure 5 we show the values of the three order parametersL(φ), from which the monomer
densities P±(φ) follow via (14), as a function of βJp, for p = 0.2 (left-hand graph) and
p = 0.4 (right-hand graph). These values are obtained by numerical solution of the saddle-
point equations (13). We clearly observe the point where type (ii) solutions (two possible
values for the L(φ)) bifurcate from the type (i) solution (all L(φ) are identical), at βJp = 3/2
for both graphs. In contrast, the location of the second bifurcation from type (ii) to type
(iii) solutions is indeed seen to depend on the parameter p, as predicted. We also observe how
for β → ∞ the system approaches the ground state (18), (19), where L(φ) ∈ {p−1, 0, p+1}.

4. Solution of the full model for q = 2

We will now turn to the full model described by the combination of all three energy
contributions (1)–(3). Since we now have a Hamiltonian with both (site) disorder and short-
range interactions, a simple mean-field approach such as that used in the previous section will
no longer apply. Here our solution will be based on a suitable adaptation of the random-field
techniques of [13, 16]. We will, for simplicity, consider only the simplest non-trivial case
q = 2, where φi = 1

2πσi with σi ∈ {−1, 1}. Our orientation variables can now be replaced by
Ising spins, which leads to significant simplifications. For instance, the various terms in the
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Hamiltonian reduce to (upon dropping the irrelevant constants)

Hp(σ) = − Jp

2N

∑
ij

σiξiξjσj (25)

HHb(σ) = − 1
2JHb

∑
i

[1 − σiσi+1][1 − σiσi−1] (26)

Hs(σ) = −Js
∑
i

ηi σi+1σi−1 (27)

with JHb = 1
2 (J

L
Hb +JR

Hb), and with ηi = cos[ai]. Left and right chirality energies have become
identical, as expected for φi ∈ {− 1

2π,
1
2π}. The two ‘chirality’ order parameters (9) reduce to

χ = lim
N→∞

〈χ(σ)〉 χ(σ) = 1

4N

∑
i

[1 − σiσi+1][1 − σiσi−1]. (28)

The joint distribution w̃[η, ξ ] of the disorder variables {ηi, ξi} (which are independent for
different sites) follows from (4):

w̃[η, ξ ] =
∑
λ

W(λ) δξ,ξ(λ)δ [η − cos[a(λ)]] . (29)

4.1. Calculation of the free energy

We note that the polarity energy (25) can be written in terms of the ‘staggered magnetization’

m(σ) = 1

N

∑
i

ξiσi (30)

in the form Hp(σ) = − 1
2JpNm2(σ). We isolate the order parameter m in the expression

for the free energy per site (7), by inserting 1 = ∫
dm δ[m − 1

N

∑
i σiξi]. Writing the delta

function in integral representation then leads to

f = − lim
N→∞

1

βN
log

∫
dm dm̂ e−βNGN(m,m̂) (31)

GN(m, m̂) = −imm̂ − 1

2
Jpm

2 − 1

βN
logZN(−iβm̂) (32)

where the complicated (short-range) part of the partition sum has now been concentrated in
the function ZN(x):

ZN(x) =
∑

σ1...σN

e
1
2 βJHb

∑
i [1−σiσi+1][1−σiσi−1]+βJs

∑
i σi−1ηiσi+1+x

∑
i σi ξi (33)

(with σ0 = σN+1 ≡ 0). The integral in (31) can for N → ∞ be evaluated via steepest descent,
and will be dominated by the saddle points of the exponent G∞(m, m̂). After elimination of
m̂ via the saddle-point equation im̂ = −Jpm, we can thus write the asymptotic free energy per
monomer (32) as

f = extrm

{
1

2
Jpm

2 − lim
N→∞

1

βN
logZN(βJpm)

}
. (34)

In order to calculate the partition sum (33) we will employ the random-field techniques
of [13, 16]. We condition the function ZN(x) on the values {σN−1, σN } of the two spins
at the end of the chain:

Z
(N)
σσ ′ (x) =

∑
σ1...σN

e
1
2 βJHb

∑
i [1−σiσi+1][1−σiσi−1]+βJs

∑
i σi−1ηiσi+1+x

∑
i σi ξi δσN−1,σ δσN ,σ ′ (35)
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with ZN(x) = ∑
σσ ′=±1 Z

(N)
σ,σ ′(x). The addition of an extra monomer to the chain, i.e.

N → N + 1, then leads to the following recurrent relation for the conditioned partition
functions: 


Z

(N+1)
++ (x)

Z
(N+1)
+− (x)

Z
(N+1)
−+ (x)

Z
(N+1)
−− (x)


 = MN+1(x)TN




Z
(N)
++ (x)

Z
(N)
+− (x)

Z
(N)
−+ (x)

Z
(N)
−− (x)


 (36)

in which the 4 × 4 matrices Mi (x) and Ti are defined as

Mi (x) =




exξi 0 0 0
0 e−xξi 0 0
0 0 exξi 0
0 0 0 e−xξi


 (37)

Ti =




eβJsηi 0 e−βJsηi−βJHb 0
e−βJsηi+βJHb 0 eβJsηi+2βJHb 0

0 eβJsηi+2βJHb 0 e−βJsηi+βJHb

0 e−βJsηi−βJHb 0 eβJsηi


 . (38)

As a result we can now write the short-range partition sum ZN(x) (33) in terms of the random
matrices (37) and (38), where the randomness is in the {ξi, ηi}, as

ZN(x) =




1
1
1
1


 ·

[
N∏
i=3

Mi+1(x)Ti

]
Z

(2)
++ (x)

Z
(2)
+−(x)

Z
(2)
−+(x)

Z
(2)
−−(x)


 . (39)

The (random) matrix product will be evaluated in terms of the following (non-negative)
stochastic quantities, which represent the different ratios of the conditioned partition sums (35):

k
(1)
j = e−2xξj

Z
(j)
++

Z
(j)
+−

k
(2)
j = e2xξj

Z
(j)
+−

Z
(j)
−+

k
(3)
j = e−2xξj

Z
(j)
−+

Z
(j)
−−

. (40)

From the recurrence relation (36) it follows that the variables k
(.)
j are, in turn, generated by

iteration of the following mapping:

k
(1)
j+1 = eβJsηj k(1)j k

(2)
j + e−βJsηj−βJHb

e−βJsηj k
(1)
j k

(2)
j + eβJsηj +βJHb

e−βJHb (41)

k
(2)
j+1 = e−βJsηj k

(1)
j k

(2)
j + eβJsηj +βJHb

eβJsηj +βJHbk
(2)
j k

(3)
j + e−βJsηj

k
(3)
j e2xξj (42)

k
(3)
j+1 = eβJsηj +βJHbk

(2)
j k

(3)
j + e−βJsηj

e−βJsηj−βJHbk
(2)
j k

(3)
j + eβJsηj

eβJHb . (43)

We now use
1

βN
logZN(x) = 1

βN
logZ

(N)
−− (x) + O

(
1

N

)
(44)

and work out the conditioned partition function Z
(N)
−− (x) iteratively, via the recurrence

relation (36):
1

N
logZ

(N)
−− (x) = 1

N
logZ

(N−1)
−− (x) − xξN

N
+

1

N
log

{
e−βJsηN−1−βJHbk

(2)
N−1k

(3)
N−1 + eβJsηN−1

}
.

(45)
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Further iteration of this relation gives

lim
N→∞

1

N
logZ

(N)
−− (x) =

∫
dk dη P (k, η) log

{
e−βJsη−βJHbk(2)k(3) + eβJsη

}− xp (46)

with k = (k(1), k(2), k(3)), where p = ∫
dη
∑

ξ ξ w̃[η, ξ ] (see equation (29)), and with

P(k, η) = lim
N→∞

1

N

∑
i

δ[η − ηi]δ[k − ki]. (47)

Provided the stochastic process (41)–(43) is ergodic, the distribution P(k, η) will be identical
to the (joint) stationary distribution of the pair {k, η}, i.e. we may write P(k, η) =
limN→∞ 1

N

∑
i〈δ[η−ηi]δ[k−ki]〉. Since ki is always statistically independent of ηi according

to (41)–(43) (ki depends only on those ηj and ξj with j < i), we have 〈δ[η− ηi]δ[k − ki]〉 =
〈δ[η − ηi]〉〈δ[k − ki]〉. Hence P(k, η) = P∞(k|x)w̃[η], where P∞(k|x) is the invariant
distribution of the process (41)–(43) (which is parametrized by x, due to the occurrence of x
in (42)) and where w̃[η] = ∑

ξ w̃[η, ξ ]. We thereby find (46) being replaced by

lim
N→∞

1

N
logZ

(N)
−− (x) = −xp +

∫
dk P∞(k|x)

∫
dη w̃[η] log

{
e−βJsη−βJHbk(2)k(3) + eβJsη

}
.

(48)

As a final consequence we can now write the free energy per monomer (34) as

f = extrm

{
1
2Jpm

2 + Jpmp − 1

β

∫
dk P∞(k|βJpm)

×
∫

dη w̃[η] log
[
e−βJsη−βJHbk(2)k(3) + eβJsη

]}
(49)

where the invariant measure P∞(k|x) of the process (41)–(43) is to be solved from

P∞(k|x) =
∫

dk′ P∞(k′|x)
∫

dη
∑
ξ

w̃[η, ξ ] δ
[
k − F(k′|x, η, ξ)] (50)

with

(F1(k|x, η, ξ)
F2(k|x, η, ξ)
F3(k|x, η, ξ)

)
=




eβJs ηk1k2+e−βJs η−βJHb

e−βJs ηk1k2+eβJs η+βJHb
e−βJHb

e−βJs ηk1k2+eβJs η+βJHb

eβJs η+βJHb k2k3+e−βJs η
k3e2xξ

eβJs η+βJHb k2k3+e−βJs η

e−βJs η−βJHb k2k3+eβJs η
eβJHb


 . (51)

In the case of the one-dimensional random-field Ising model [13, 18], for which the analysis
is very similar, the corresponding distribution P∞(k) is known, at least in certain parameter
regions, to become highly non-trivial and acquire the form of the derivative of a devil’s staircase.
To our knowledge, no general analytic expression has been derived to describe P∞(k) for finite
temperatures. Nevertheless, for the purpose of the present paper it is only a simple numerical
exercise to evaluate P∞(k|x) directly by iteration of (51), for values of {η, ξ} drawn randomly
according to w̃[η, ξ ].

4.2. Simple limiting cases

Before converting our general results into phase diagrams we will first carry out benchmark
tests of our expressions, by inspecting simple limits.

• Firstly, in the absence of short-range interactions, i.e. for JHb = Js = 0, the expression
for the asymptotic free energy per site (49) should reduce to the q = 2 version of (12),
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which ought to be simply the free energy of the infinite-range Mattis model. Indeed, we
find that for Js = JHb = 0 the mapping (51) reduces to(F1(k|x, η, ξ)

F2(k|x, η, ξ)
F3(k|x, η, ξ)

)
=
( 1

k1k2+1
k2k3+1 k3e2xξ

1

)
. (52)

Hence P∞(k|x) = δ[k1 − 1]δ[k3 − 1]P∞(k2|x), with

P∞(k2|x) = 1
2 (1 + p)δ[k2 − e2x] + 1

2 (1 − p)δ[k2 − e−2x]. (53)

Substitution into (49), for JHb = Js = 0, gives

f = extrm

{
1

2
Jpm

2 − 1

β
log 2 cosh(βJpm)

}
(54)

which is indeed the well-known asymptotic free energy per site of an infinite-range Mattis
magnet.

• Secondly, for JHb = 0 and ηi = ξi = 1 for all i (i.e. w̃[η, ξ ] = δ[η − 1]δ[ξ − 1] and
p = 1) the macroscopic laws of our model should reduce to those of [21], which describes
pattern recall in recurrent neural networks with competition between short-range and long-
range information processing, for the simplest ‘one-pattern’ scenario. For JHb = 0 and
w̃[η, ξ ] = δ[η − 1]δ[ξ − 1] the mapping (51) becomes fully deterministic, and takes the
form

(F1(k|x)
F2(k|x)
F3(k|x)

)
=




eβJs k1k2+e−βJs

e−βJs k1k2+eβJs

e−βJs k1k2+eβJs
eβJs k2k3+e−βJs

k3e2x

eβJs k2k3+e−βJs

e−βJs k2k3+eβJs


 (55)

and P∞(k|x) = δ[k − k (x)], where k (x) denotes the fixed-point of the mapping (55)
with non-negative components, which (in line with our previous assumption of ergodicity
of the original process (41)–(43)) we assume to be unique. We observe that (55) preserves
k1 = k3, and the remaining components of the fixed point k (x) = (k 1, k

 
2, k

 
1) must obey

(
k 1
k 2

)
=
( eβJs k 1k

 
2+e−βJs

e−βJs k 1k
 
2+eβJs

e−βJs k 1k
 
2+eβJs

eβJs k 2k
 
1+e−βJs

k 1e2x

)
. (56)

This (in turn) gives (k 1, k
 
2) = (k , e2x), where (upon substituting x = βJpm) k is the

non-negative solution of

k = eβ(Js+Jpm)k + e−β(Js+Jpm)

e−β(Js−Jpm)k + eβ(Js−Jpm)
. (57)

Insertion into (49) gives us

f = extrm

{
1

2
Jpm

2 − 1

β
log

[
e−β(Js−Jpm)k + eβ(Js−Jpm)

]}
. (58)

It follows from (57) that the quantity λ = e−β(Js−Jpm)k + eβ(Js−Jpm) occurring in (58)
obeys (λ − eβ(J2+Jpm))(λ − eβ(Js−Jpm)) = e−2βJs , which we recognize as the eigenvalue
equation of the transfer matrix

T =
(

eβ(Js+Jpm) e−βJs

e−βJs eβ(Js−Jpm)

)
. (59)

This shows that the free energy (58) is indeed identical to that of [21].
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Figure 6. Phase diagram cross-sections in the (Jp, T ) plane, for Js = 4 and JHb = 0 (left-hand
graph) and JHb = 1/2 (right-hand graph), obtained by numerical solution of (61) (which becomes
increasingly complicated as T → 0). They involve a high-temperature region ‘P’ where m = 0
is the only local minimum of f [m] and a region ‘F’ where two equivalent m �= 0 solutions (one
positive, one negative) minimize f [m]. In the low-temperature region a series of ‘mixed’ phases
‘M’ emerge, where multiple states with different degrees of folding can be simultaneously locally
stable (four values for m give local minima). The P→F transition is second order. The F→M
transitions are first order (dynamical) transitions. In the presence of hydrogen bonds, the M phases
are found to be increasingly suppressed (see right-hand diagram).

4.3. Phase diagrams and comparison with numerical experiments

In order to obtain phase diagrams we finally have to calculate the local extrema of a free-energy
surface f [m], the argument of the extremization in (49), which still depends on the choice
made for the statistics of the monomer properties {ξ, η}. Here we apply our theory to the
simple example w̃[η, ξ ] = 1

4 [δ(η + 1) + δ(η − 1)][δ(ξ + 1) + δ(ξ − 1)], hence also p = 0. In
this case the free-energy surface f [m] simplifies to

f [m] = 1

2
Jpm

2 − 1

2β

∫
dk P∞(k|βJpm)

× log
[
(e−β(Js+JHb)k2k3 + eβJs )(eβ(Js−JHb)k2k3 + e−βJs )

]
(60)

where the invariant measure P∞(k|x) of the process (41)–(43) is to be solved from

P∞(k|x) = 1
4

∫
dk′ P∞(k′|x)

∑
η=±1

∑
ξ=±1

δ
[
k − F(k′|x, η, ξ)] (61)

with the mapping defined in (51). We determine the solution of (61) via numerical iteration.
Note that, due to w̃[ξ ] = w̃[−ξ ], we have P∞(k|x) = P∞(k| − x). Hence f [m] = f [−m],
and m = 0 always corresponds to a saddle-point of f [m]. Note also that for JHb = 0 (no
hydrogen bonding) considerable further simplification of (60), (61) will be possible, due to the
resulting conservation of the symmetry k1 = k3 by the map (51).

Examples of the results of our analysis of the surface (60) are shown in figure 6, as phase
diagram cross-sections in the (T , Jp) plane, for {Js = 4, JHb = 0} (left-hand diagram) and
{Js = 4, JHb = 1

2 } (right-hand diagram). They involve

(i) a high-temperature phase ‘P’, where m = 0 is the only local minimum of f [m] and no
folding will occur,
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Figure 7. Entropy per monomer s = −∂f/∂T close to zero temperature (in this graph T = 0.01,
Js = 4 and JHb = 0), as a function of Jp , evaluated numerically via differentiation of the free
energy (49). It is seen to become non-zero and develop a hierarchy of sharp peaks at special values
of Jp , where local frustration is maximal. ‘Mixed’ phases in the phase diagram emerge at precisely
these locations (see figure 6).

(ii) a phase ‘F’ where two equivalent m �= 0 solutions minimize f [m] (one positive,
one negative, reflecting the symmetry of the present model under overall reflection
φi → φi + π ), the ‘folded state’, and

(iii) phases ‘M’ where four m �= 0 solutions minimize f [m] locally (two positive, two
negative).

In the M phases, the degree of folding observed will strongly depend on initial conditions (in
spite of the fact that the lowest value for f [m], and hence the thermodynamic state, corresponds
only to the maximally folded state, where |m| is largest). See also figure 9 below. The P→F
transition is an ordinary second-order transition, whereas the F→M transitions are first-order
(dynamical) transitions. In the presence of hydrogen bonding, the M phases are found to be
increasingly suppressed (see right-hand diagram).

In order to illuminate the physical mechanism which produces the ‘mixed’ phases, we
plot in figure 7 the entropy per monomer s = −∂f/∂T close to T = 0, for each of the local
minima of f [m]. It is seen to become non-zero, and to develop a hierarchy of sharp peaks
as a function of Jp (cf [14]). These peaks correspond to special parameter values for which
frustration effects become dominant, and for which many energetically equivalent states are
possible. The largest value of the ground-state entropy is obtained at the first of these peaks,
for Jp ≈ 11.2; this corresponds to the location in the phase diagram where the first of the
‘mixed’ phases appears, see figure 6.

The qualitative features of diagrams such as those shown in figure 6 can now be understood
as follows. For large values of {Jp, T } the short-range forces (steric forces and hydrogen bonds)
become irrelevant, and the diagram approaches that of a Mattis model (as it should), with a
second-order transition along the line T = Jp. For low temperatures the simple Mattis state is
disrupted by the steric interactions, which try to enforce monomer-specific short-range order
along the chain; as a result the value needed forJp to createm �= 0 states is increased (explaining
the re-entrance observed in figure 6). The complex phenomenology (reminiscent of random
field models) of multiple locally stable configurations, induced by the steric interactions, is
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Figure 8. Equilibrium values of the ‘chirality’ and ‘polarity’ order parameters χ and m as
functions of the hydrogen-bond strength JHb. Lines represent theoretical prediction, and markers
the simulation results as measured after 120 000 iterations per monomer in a system of N = 1000
monomers. The values for Jp were chosen as Jp ∈ {4, 8, 12} (left panel: upper graph to lower
graph; right panel: lower graph to upper graph). In all cases T = 2 and Js = 2.

subsequently found to be damped by the hydrogen bonds, which act to reduce the complexity
of the ground state.

Next, in figure 8 we plot the equilibrium values of the ‘chirality’ (28) and ‘polarity’ (30)
order parameters as functions of the hydrogen bond strength JHb, for three different values
of Jp (in a region of the phase diagram where there are no mixture phases, i.e. where, apart
from overall reflection, the stationary state is unique). Note that χ is simply calculated as
χ = − 1

2∂f/∂JHb (which is done numerically). The two order parameters χ and m are seen
to show an opposite dependence on JHb (monotonically increasing versus decreasing), as they
should, since χ measures the degree of helical structure along the chain, whereas m measures
the probability to find monomers with identical polarity at the same side of the chain. Due
to the competing roles played by two coupling parameters {Jp, JHb}, we see that ‘helices’
are favoured for large JHb or small Jp whereas ‘folding’ in the sense of efficient polarity
separation, on the other hand, is favoured for small JHb or large Jp. Note that the observed
incompatibility of helical structure with polarity separation is just a reflection of the simple form
we choose in this section for the disorder distribution w̃[η, ξ ] (with statistically independent η
and ξ ); the situation would obviously have been different for distributions describing correlated
disorder variables. In the same figures we also show the results of numerical simulations, for
comparison (the markers in the two graphs). For small JHb our experiments are seen to be in
excellent agreement with the theory (finite-size effects are of the order of O(N−1/2) ≈ 0.03)
whereas for large JHb short-range couplings become increasingly dominant, leading to domain
formation and very slow equilibration times, which make it difficult in practice to probe the
equilibrium regime. In our experiments we have measured the value of the order parameters
after 120 000 iterations per spin, which for large JHb is no longer sufficient. Note that the
theory also predicts the existence of repeated small discontinuities in both order parameters;
these originate from frustration-related short-range phenomena, as described in e.g. [14], which
induce discretization of observable supports [19, 20] and non-analytic integrated distribution
functions (e.g. the devil’s staircase [13]).

To verify our results further we have also performed simulation experiments in the ‘mixed’
phase regions, where our theory predicts that the extent of polarity-driven folding (i.e. the
equilibrium value of m) will depend on initial conditions. In figure 9 we show the value
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Figure 9. Order parameter m as measured in numerical simulations of an N = 1000 chain after
20 000 iterations/monomer (mfin), versus its initial value mini = m(t = 0), for system parameters
Js = 4, Jp = 10, JHb = 1 and T = 0.1 (left-hand diagram, in the M phase) and Js = 2, Jp = 4,
JHb = 1 and T = 0.5 (right-hand diagram, in the F phase). In the ‘folding’ phase (right), our
theory predicts the existence of only one m > 0 ergodic component (see free energy per monomer
f [m], graph in the inset), at m ≈ 0.67 (horizontal line). In the ‘mixed’ phase (left), our theory
predicts the existence of two m > 0 ergodic components (see free energy per monomer f [m],
graph in the inset), at m ≈ 0.65 (horizontal line, for mini < 0.774) and m ≈ 1 (for mini > 0.774).
This is confirmed by the numerical simulations (finite-size effects are expected to be of order

0m ≈ N− 1
2 ≈ 0.01). In the m ≈ 0.65 state of the mixed phase (left-hand graph, horizontal line),

the system is found not yet to be fully equilibrated (signalled by a dependence of mfin on mini), due
to domain formation.

of the ‘polarity’ order parameter m, as measured in numerical simulations of an N = 1000
chain after 20 000 iterations per monomer, as a function of its initial value m(t = 0), for two
different parameter settings (one, to the left, in an M region of the phase diagram; one, to
the right, in an F region of the phase diagram). In the insets of these graphs we also plot the
corresponding free energy per monomer f [m] as predicted by our theory, which shows either
two m > 0 locally stable states (left diagram) or one m > 0 locally stable state (right-hand
diagram). In both cases the numerical experiments are found to verify the existence and the
quantitative properties of the expected ergodicity breaking in the M phase. We clearly observe
that, in phase M, the choice of initial conditions, in particular whether or not m(t = 0) is to
the left of the free-energy barrier in f [m], determine the equilibrium value of m. We also
see that in the ‘mixed’ phase (left-hand diagram) the ergodic component with the smallest
value of m is poorly equilibrated due to domain formation. This has also been observed for
a similar type of statistical mechanical model in [21]: in those parameter regions where a
multiple number of states can be locally stable, different ergodic components are found to
have different equilibration timescales.

5. Discussion

In this paper we have presented an exactly solvable model for secondary structure formation
in random hetero-polymers, consisting of amino-acid monomers which are allowed to interact
in three qualitatively different ways: via (short-range) steric interactions, via (short-range)
hydrogen-bonding and via (long-range) polarity-induced forces. Our strategy was to exploit the
one-dimensional nature of the monomer chain, and to separate questions relating to secondary
structure formation from those relating to tertiary structure formation by taking into account
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the effects of the latter only via an effective energy term which measures the potential for
overall energy reduction by folding (rather than trying to find the actual state realizing this
potential). This allows us to move away from real-space calculations towards a calculation
in 1 + ∞ dimensions, where the statistical mechanical variables represent the orientations of
the monomer residues relative to the chain axis. Solution can now be based on a combination
of mean-field and random transfer-matrix techniques, which in one-dimensional models are
known to reduce the evaluation of the partition function to a relatively simple numerical
problem. Due to the presence of long-range interactions (via polarity-induced forces), phase
transitions are still possible (and do indeed occur) at finite temperatures.

Our order parameters measure the degree of polarity-induced collapse of the chain, as well
as the degree of helicity along the chain. The phase diagrams exhibit second-order transitions
between ‘folded’ and ‘unfolded’ states, and, for low-temperature and sufficiently strong steric
interactions, a series of ‘mixed’ phases (separated from the previous ones by discontinuous
transitions) where, in addition to the maximally folded states, specific partially folded states can
also be locally stable. The latter phases are created at parameter values for which frustration is
maximal, and where the entropy becomes particularly large. Although in the present paper we
have mostly restricted ourselves (for simplicity) to chains with just a small number of possible
orientations per monomer, it is not fundamentally more difficult to solve the model for larger
degrees of orientational freedom (although certain adaptations are needed before the continuum
limit can be taken, such as a re-scaling of the effective long-range coupling Jp and/or of the
number of relative monomer orientations where polarity interactions occur). We have only
evaluated our theory for the simplest choice of disorder statistics (the statistical properties of
the monomers, and their physical properties such as polarity and steric constraints). Here the
emerging picture is already quite satisfactory, in that explicit analytical results can be obtained,
and that the predicted physical behaviour of the monomer chain (confirmed qualitatively and
quantitatively by numerical simulations) makes perfect sense in the context of proteins: the
polarity forces drive the transition to a collapsed state, the steric forces introduce monomer
specificity and the hydrogen bonds stabilize the conformation by damping the frustration-
induced multiplicity of states.

There is still much scope for increasing the biological realism and relevance of our model
without affecting its analytical solvability, at different levels. Firstly, without changing the
model or its techniques for solution, one can easily consider more realistic choices for the
monomer statistics, such as non-binary polarity variables, or for the orientational freedom
of the monomers (for instance, the hydrogen-bond term may be modified to favour helix-
type formations at the biologically observed ratio of 3.6 monomers per turn). Secondly, at a
next level of sophistication one could construct a more realistic form for the polarity-induced
energy contribution (breaking the present hydrophobic–hydrophilic symmetry, and based upon
biological data), or more realistic representations of the degrees of freedom of the individual
peptide units and residues (i.e. three angles per monomer, rather than one), or the action
of ‘chaperones’ (via external fields). Solution of such models would not be essentially more
difficult than that of the examples worked out here; the main problem would rather be to extract
the canonical definitions of the ingredients to be incorporated into the model from the available
biological data. In contrast, qualitatively different and more difficult types of modification and
extension would be to consider non-random hetero-polymers, where the monomer properties
and statistics are chosen such as to mimic real proteins, or to try to analyse the interplay
between secondary and tertiary structure formation. Here new techniques for solution will
have to come in.

The main problem in the statistical mechanical study of folding proteins appears to be
the construction of models where an acceptable and productive balance can be found between
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analytical solvability and biological realism. We believe that our present model might point
to a new direction where this might be achieved.
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